Effect of the Protein Denaturants Urea and Guanidinium on Water Structure: A Structural and Thermodynamic Study

نویسندگان

  • Francesco Vanzi
  • Bhupinder Madan
چکیده

The mechanism of the denaturing effects of urea and the guanidinium ion on proteins is still an unsolved and important problem in protein chemistry. Changes in the hydrogen bond network of water in the first hydration shell of urea and guanidinium were analyzed in terms of the random network model using Monte Carlo simulations. Bulk water consists of two populations of hydrogen bonds: a predominantly linear population and a small but significant population of slightly longer and more bent hydrogen bonds. In the first shell of urea, hydrogen bonds between waters solvating the amino groups were shorter and more linear on average than those in bulk water. These changes are caused by a depletion of the more distorted hydrogen bonds. These changes in hydration water structure have previously been seen only around nonpolar solutes of solute groups. Thus urea, being entirely polar, is anomalous in this regard. Hydrogen bonds around guanidinium were longer and more bent than those in bulk water. These distortions are characteristic of a polar solute but are smaller than expected for an ion. The hydrogen bond structural parameters were combined with a random network model equation of state for heat capacity to calculate the hydration heat capacities (∆Cp) of urea and guanidinium. The value of ∆Cp obtained for urea is positive, characteristic of a nonpolar solute, and in good agreement with the experimental value. Urea and, to a lesser extent, guanidinium are unique among polar molecules in that they are highly soluble yet appear to structure water more like nonpolar solutes. The relevance of this observation to proposed mechanisms of denaturation is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical denaturants inhibit the onset of dewetting.

The mechanism by which the aqueous cosolvents guanidinium chloride and urea denature proteins is a matter of controversy. Here, we use all-atom molecular dynamics simulations to study the effect of both denaturants on the dewetting of water confined between nanoseparated hydrophobic plates. It is found that the denaturants inhibit the onset of dewetting, so that it occurs at shorter interplate ...

متن کامل

Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group.

The mechanism by which urea and guanidinium destabilize protein structure is controversial. We tested the possibility that these denaturants form hydrogen bonds with peptide groups by measuring their ability to block acid- and base-catalyzed peptide hydrogen exchange. The peptide hydrogen bonding found appears sufficient to explain the thermodynamic denaturing effect of urea. Results for guanid...

متن کامل

Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.

In order to clarify the mechanism of denaturant-induced unfolding of proteins we have calculated the interactions between hydrophobic and ionic species in aqueous guanidinium chloride and urea solutions using molecular dynamics simulations. Hydrophobic association is not significantly changed in urea or guanidinium chloride solutions. The strength of interaction between ion pairs is greatly dim...

متن کامل

Revisiting absorbance at 230nm as a protein unfolding probe.

Thermodynamic stability and unfolding kinetics of proteins are typically determined by monitoring protein unfolding with spectroscopic probes, such as circular dichroism (CD) and fluorescence. UV absorbance at 230nm (A(230)) is also known to be sensitive to protein conformation. However, its feasibility for quantitative analysis of protein energetics has not been assessed. Here we evaluate A(23...

متن کامل

Structural perturbation of proteins in low denaturant concentrations.

The presence of very low concentrations of the widely used chemical denaturants, guanidinium chloride and urea, induce changes in the tertiary structure of proteins. We have presented results on such changes in four structurally unrelated proteins to show that such structural perturbations are common irrespective of their origin. Data representative of such structural changes are shown for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998